(1)

International Baccalaureate
Baccalauréat International
Bachillerato Internacional

MATHEMATICS

HIGHER LEVEL
PAPER 3 - SERIES AND DIFFERENTIAL EQUATIONS
Tuesday 21 May 2013 (afternoon)
1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the Mathematics HL and Further Mathematics SL information booklet is required for this paper.
- The maximum mark for this examination paper is [60 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 9]

The Taylor series of \sqrt{x} about $x=1$ is given by

$$
a_{0}+a_{1}(x-1)+a_{2}(x-1)^{2}+a_{3}(x-1)^{3}+\ldots
$$

(a) Find the values of a_{0}, a_{1}, a_{2} and a_{3}.
(b) Hence, or otherwise, find the value of $\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{x-1}$.
2. [Maximum mark: 15]

Consider the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}+y \tan x=\cos ^{2} x$, given that $y=2$ when $x=0$.
(a) Use Euler's method with a step length of 0.1 to find an approximation to the value of y when $x=0.3$.
(b) (i) Show that the integrating factor for solving the differential equation is $\sec x$.
(ii) Hence solve the differential equation, giving your answer in the form $y=f(x)$.
3. [Maximum mark: 11]

Consider the infinite series $\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}} x^{n}$.
(a) Find the radius of convergence.
(b) Find the interval of convergence.
(c) Given that $x=-0.1$, find the sum of the series correct to three significant figures.
4. [Maximum mark: 11]
(a) Express $\frac{1}{r(r+2)}$ in partial fractions.
(b) Let $S_{n}=\sum_{r=1}^{n} \frac{1}{r(r+2)}$.
(i) Show that $S_{n}=\frac{a n^{2}+b n}{4(n+1)(n+2)}$, where a and b are positive integers whose values should be determined.
(ii) Write down the value of $\lim _{n \rightarrow \infty} S_{n}$.
5. [Maximum mark: 14]
(a)

Figure 1
Figure 1 shows part of the graph of $y=\frac{1}{x}$ together with line segments parallel to the coordinate axes.
(i) By considering the areas of appropriate rectangles, show that

$$
\frac{2 a+1}{a(a+1)}<\ln \left(\frac{a+1}{a-1}\right)<\frac{2 a-1}{a(a-1)} .
$$

(ii) Hence find lower and upper bounds for $\ln (1.2)$.

(Question 5 continued)

(b)

Figure 2

An improved upper bound can be found by considering Figure 2 which again shows part of the graph of $y=\frac{1}{x}$.
(i) By considering the areas of appropriate regions, show that

$$
\ln \left(\frac{a}{a-1}\right)<\frac{2 a-1}{2 a(a-1)} .
$$

(ii) Hence find an upper bound for $\ln (1.2)$.

